

INFUSE™ 9010

The Dow Chemical Company - Olefin Block Copolymer

Monday, November 4, 2019

General Information

Product Description

INFUSE 9010 Olefin Block Copolymer is a low tack, high tensile strength olefin elastomer for formulating soft compounds. It is readily compounded with a variety of other materials to make simple to complex blends. Its versatility makes it useful for providing solutions a range of soft applications, from grips to toys and beyond.

Main Characteristics:

- · Excellent for compounds and blends
- · Low tack product
- High upper service temperature performance
- · Highly flexible with good elastic recovery
- · General purpose elastomer

General						
Material Status	Commercial: Active					
Availability	Asia Pacific	Latin America				
	 Europe 	 North America 				
Forms	Pellets					

ASTM & IS	O Properties 1		
Physical	Nominal Value	Unit	Test Method
Density / Specific Gravity	0.879		ASTM D792
Melt Mass-Flow Rate (190°C/2.16 kg)	0.50	g/10 min	ASTM D1238
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus - 100% Secant ² (Compression Molded)	493	psi	ASTM D638
Tensile Strength ² (Break, Compression Molded)	1910	psi	ASTM D638
Tensile Elongation ² (Break, Compression Molded)	> 750	%	ASTM D638
Elastomers	Nominal Value	Unit	Test Method
Tensile Strength ³ (Break)	2110	psi	ASTM D412
Tensile Elongation ³ (Break)	770	%	ASTM D412
Tear Strength	273	lbf/in	ASTM D624
Compression Set			ASTM D395
70°F	24	%	
158°F	67	%	
Hardness	Nominal Value	Unit	Test Method
Durometer Hardness (Shore A, Compression Molded)	77		ASTM D2240
Thermal	Nominal Value	Unit	Test Method
Melting Temperature (DSC)	252	°F	Internal Method
TMA ⁴ (39.4 mil)	250	°F	Internal Method

Notes

1	Typical	properties:	these	are not	to be	construed	as s	pecifications.
---	---------	-------------	-------	---------	-------	-----------	------	----------------

⁴ 1N, 5°C/min

² 20 in/min

³ Die C